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I. BACKGROUND ON LINE SPECTRAL ESTIMATION

The line spectral estimation problem aims to recover the frequen-
cies of a complex time signal x that is assumed to be sparse in the
spectral domain from its discrete measurements y ∈ Cn, uniformly
acquired at a sampling frequency fS ∈ R+. More precisely, the time
signal x is assumed to follow the s-spikes model given by

∀t ∈ R, x (t) =

s∑
r=1

αre
i2πξrt, (1)

whereby Ξ = {ξr}1≤r≤s is the ordered set containing the s spectral
components generating the signal x, and α = {αr}1≤r≤s the one of
their associated complex amplitudes. The particularly of this model
stands in the fact that the frequencies Ξ are drawn continuously on
[0, fS) and are not constrained belong to some finite discrete grid, as
opposed to discretization-based methods to tackle inverse problems.

This problem is ill-posed and there are infinitely many estimators
of the spectral distribution x̂ of x that are consistent with the mea-
surement vector y. Among all those estimators, the one considered
to be optimal in this spikes recovery context is the one returning a
consistent spectral distribution x̂0 of x̂ having the sparsest possible
spectral support. Equivalently, this estimator can be defined by the
output of the minimization program

x̂0 = arg min
x̂∈D1

‖x̂‖0 (2)

subject to y = Fn (x̂) ,

where D1 denotes the space of absolutely integrable spectral distri-
butions. The functions ‖·‖0 and Fn (·) are respectively the support
counting pseudo-norm and the inverse discrete time Fourier transform
whose expressions are given in Table I.

Program (2) is non-convex and difficult to solve in a direct
approach due to the combinatorial nature of “L0” minimization. A
commonly proposed workaround consists in analysing the output of
a convex relaxation of (2), obtained by swapping the cardinality cost
function ‖·‖0 into a minimization of the total-variation norm |·| (TfS )
defined in Table I over D1. This relaxation was proven to be tight in
[1] and robust to noise in [2], provided that a sufficient separability
criterion

∆TfS
(Ξ) ≥ 4fS

n− 1
(3)

is respected, where ∆TfS
(·) is the minimal warp around distance on

the rescaled elementary torus TfS = [0, fS) between elements of a
set defined in Table I. This bound was tightened later on in [3].

More interestingly, it has been shown in [4] that the tightness
of the convex approach still holds with high probability when
extracting independently at random a small number of observations
and discarding the rest of it. The observation vector y ∈ Cm resulting
from this random process is linked to the spectrum x̂ of the probed
signal by the linear relation y = CIFn (x̂) where CI ∈ {0, 1}m×n

is a boolean matrix whose rows are equal to
{
eTk

}
k∈I and where

I ⊆ J0, n− 1K is the subset of cardinality m describing the indexes
of the retained samples. In addition, it has been shown that the dual
Lagrange program takes the form of the semidefinite program

(c?, H?) = arg max
c∈Cm

H∈Cn×n

<
(
yTc

)
(4)

subject to
[
H q
q∗ 1

]
� 0

T ∗
n (H) = e0

q = C∗
Ic,

where T ∗
n is the adjoint of the linear operator Tn and Tn (u) is

the Toeplitz Hermitian matrix whose first row is equal to u for
all u ∈ Cn. Moreover, the polynomial of degree n − 1 having
for coefficients vector q? = C∗

Ic? locates with high probability the
frequencies supporting x̂0 around the unit circle.

II. MAIN CONTRIBUTION

The semidefinite program (4) remains of dimension n, which can
be much greater than the number of observation m. Its output is
computable in O

(
n7

)
operations via the use of interior point solvers,

which become intractable when n exceeds a few hundred. Our result
complements the tightness guarantees of [4] by showing the existence
of a semidefinite program of dimension m recovering the spectral
support of x̂0 with high probability. Moreover since m > O

(
log2 n

)
has been guaranteed in [4] to produce a tight estimate of the spectral
support, our program is computable in a poly-logarithmic time of the
variable n. Our results are summarized by the following theorem, and
relies on a novel extension of the theory of Gram parametrization of
trigonometric polynomials to subspaces of polynomials [5].

Theorem 1. Let I be a subset of cardinality m drawn uniformly
at random in J0, n− 1K, and let RI the linear operator defined by
RI (u) = CITn (u)C∗

I for all u ∈ Cn. Suppose that x follows
Model (1) and satisfies Condition (3). Moreover, suppose that the
elements of α have phases drawn independently and uniformly at
random in [0, 2π). Consider any positive number δ > 0. There exists
a constant C > 0 such that if

m ≥ Cmax
{
log2

n

δ
, s log

s

δ
log

n

δ

}
,

then the semidefinite program
(c?, S?) = arg max

c∈Cm

S∈Cm×m

<
(
yTc

)
(5)

subject to
[
S c
c∗ 1

]
� 0

R∗
I (S) = e0

outputs with probability greater than 1 − δ a vector c? ∈ Cm such
that q? = C∗

Ic? induces a polynomial Q? of degree n − 1 locating
the support of x̂0. Moreover, this program can be solved in O

(
m3

)
operations via the alternating direction method of multipliers.
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Function Domain Expression

Fn D1 → Cn ∀k ∈ J0, n− 1K , Fn (x̂) [k] =
∫
TfS

ei2πξkdx̂ (ξ)

∆TfS
℘
(
TfS

)
→ R+ ∆TfS

(Ω) = inf(ξ,ξ′)∈Ω2 {|ξ − ξ′| : ξ 6= ξ′}

‖·‖0 D1 → R+ ∪ {+∞} ‖x̂‖0 = card
{
x̂ (ξ) 6= 0 : ξ ∈ TfS

}
|·|

(
TfS

)
D1 → R+ |x̂|

(
TfS

)
= sup

h∈C
(
TfS

) {
<
[∫

TfS
h (ξ)dx̂ (ξ)

]
: ‖h‖∞ ≤ 1

}

Table I
MATHEMATICAL DEFINITIONS
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Figure 1. Time and spectral representation of a signal x following the spikes
model with three spectral spikes and its measurement vector y when taking
n = 10 observations at a frequency fS = 1Hz.
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Figure 2. The optimal dual polynomial Q? obtained by solving Program (5)
when retaining entries of y with indexes in the set I = {0, 3, 4, 6, 8, 9} of
cardinality m = 6. Q?

(
ei2πν

)
locates the frequencies of the signal x by

reaching modulus 1 whenever ν ∈ 1
fS

Ξ.
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