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I. BACKGROUND ON LINE SPECTRAL ESTIMATION

The line spectral estimation problem aims to recover the frequen-
cies of a complex time signal x that is assumed to be sparse in the
spectral domain from its discrete measurements y € C", uniformly
acquired at a sampling frequency fs € R*. More precisely, the time
signal z is assumed to follow the s-spikes model given by

VieR, z(t)= Z apeZmert €))
r=1

whereby = = {&}, ., is the ordered set containing the s spectral
components generating the signal z, and o = {a }, ..., the one of
their associated complex amplitudes. The particularly of this model
stands in the fact that the frequencies = are drawn continuously on
[0, fs) and are not constrained belong to some finite discrete grid, as
opposed to discretization-based methods to tackle inverse problems.

This problem is ill-posed and there are infinitely many estimators
of the spectral distribution & of z that are consistent with the mea-
surement vector y. Among all those estimators, the one considered
to be optimal in this spikes recovery context is the one returning a
consistent spectral distribution o of & having the sparsest possible
spectral support. Equivalently, this estimator can be defined by the
output of the minimization program

To = arginggll |E|S 2)
y=7Fn (i’) )

where D denotes the space of absolutely integrable spectral distri-
butions. The functions ||-||, and F, (-) are respectively the support
counting pseudo-norm and the inverse discrete time Fourier transform
whose expressions are given in Table [I]

Program (@) is non-convex and difficult to solve in a direct
approach due to the combinatorial nature of “Ly” minimization. A
commonly proposed workaround consists in analysing the output of
a convex relaxation of (Z), obtained by swapping the cardinality cost
function ||-||, into a minimization of the total-variation norm |-| (T )
defined in Table|l| over D;. This relaxation was proven to be tight in
[[1] and robust to noise in [2f], provided that a sufficient separability
criterion Afs

n—1

subject to

Ar, (5) >
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is respected, where At fo (+) is the minimal warp around distance on
the rescaled elementary torus Ty, = [0, fs) between elements of a
set defined in Table |} This bound was tightened later on in [3].
More interestingly, it has been shown in [4] that the tightness
of the convex approach still holds with high probability when
extracting independently at random a small number of observations
and discarding the rest of it. The observation vector y € C™ resulting
from this random process is linked to the spectrum & of the probed
signal by the linear relation y = Cz.F,, (&) where Cz € {0,1}™*"
is a boolean matrix whose rows are equal to { el},c er and where

Z C [0,n — 1] is the subset of cardinality m describing the indexes
of the retained samples. In addition, it has been shown that the dual
Lagrange program takes the form of the semidefinite program

(¢, Hy) = arg CIE%%{ R (yTC) (@Y
HeCnxn
subject to [;{ ﬂ =0
T (H) = eo
q = Czc,

where 7, is the adjoint of the linear operator 7, and 7, (u) is
the Toeplitz Hermitian matrix whose first row is equal to u for
all w € C". Moreover, the polynomial of degree m — 1 having
for coefficients vector ¢, = C7c, locates with high probability the
frequencies supporting Zo around the unit circle.

II. MAIN CONTRIBUTION

The semidefinite program (@) remains of dimension 7, which can
be much greater than the number of observation m. Its output is
computable in O (n7) operations via the use of interior point solvers,
which become intractable when n exceeds a few hundred. Our result
complements the tightness guarantees of [4]] by showing the existence
of a semidefinite program of dimension m recovering the spectral
support of &0 with high probability. Moreover since m > O (log® n)
has been guaranteed in [4] to produce a tight estimate of the spectral
support, our program is computable in a poly-logarithmic time of the
variable n. Our results are summarized by the following theorem, and
relies on a novel extension of the theory of Gram parametrization of
trigonometric polynomials to subspaces of polynomials [5].

Theorem 1. Let T be a subset of cardinality m drawn uniformly
at random in [0,n — 1], and let Rz the linear operator defined by
Rz (u) = CzTn (u) Ct for all w € C™. Suppose that x follows
Model (1) and satisfies Condition (B). Moreover, suppose that the
elements of « have phases drawn independently and uniformly at
random in [0, 27). Consider any positive number § > 0. There exists
a constant C > 0 such that if

m > C’rnao{{log2 %,slogglog%},

then the semidefinite program

_ T
(cx, Sx) = arg cer(rclgx R (y c) 5)
Secmxm
. S ¢
subject to [C* 1} =0
R; (S) = €0

outputs with probability greater than 1 — § a vector c, € C™ such
that g. = CTc, induces a polynomial Q. of degree n — 1 locating
the support of Zo. Moreover, this program can be solved in O (m3)
operations via the alternating direction method of multipliers.
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Figure 1. Time and spectral representation of a signal = following the spikes
model with three spectral spikes and its measurement vector y when taking
n = 10 observations at a frequency fs = 1Hz.
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Figure 2. The optimal dual polynomial Q. obtained by solving Program (3)

when retaining entries of y with indexes in the set Z = {0, 3, 4,6, 8,9} of

cardinality m = 6. Qx (6127”’) locates the frequencies of the signal = by
1 —

reaching modulus 1 whenever v € T
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