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Abstract—Recent results have shown that it is possible to
recover signals having sparse line spectra from few temporal
observations via the use of convex programming. However, the
computational cost of such approaches remains the major flaw
to their use in practical system. We propose a highly scalable
algorithm relying on partial observation of the signal in the time
domain. A deterministic sub-sampling pattern is introduced and
its benefit on the computational complexity of the recovery are
highlighted. Moreover, specific sub-Nyquist recovery guarantees
are derived for this pattern.

I. INTRODUCTION

A. Partial line spectral estimation

Spectral estimation is probably one of the most common, yet
fundamental task in signal processing. In one of its generalized
form, it consists in estimating the fundamental frequencies of
a spectrally sparse signal from noisy time domain observations,
acquired through linear combinations of the output of a uniform
sampler.

More accurately, the sampled ground truth signal u? =
u (f?, c?) ∈ Cn would read u?,j =

∑s?
r=1 α

?
re

i2πf?
r j for

all j ∈ J0, n− 1K, where f? = {f?
r }

s?
r=1 is the set of its

reduced spectral components to reconstruct, and α? is the set
of associated complex amplitudes. The number of spectral
components s? is assumed to be unknown. Alternatively,
denoting by M (T) the set of complex Radeon measures
defined over the unidimensional torus T = [0, 1), one can
express the ground truth signal as the image of a sparse
measure µ? =

∑s?
r=1 α

?
rδf?

r
∈M (T) through the linear map

u? = Fn,1 (µ?) = Fn (µ?) whereby Fn,Fs
is the adjoint of

the discrete time Fourier operator in dimension n at sampling
frequency Fs. As a result, introducing the linear operator
LM = MFn, the observation vector y ∈ Cm writes

y = LM (µ?) + η, (1)

whereby M ∈ Cm×n is a known fat measurement matrix, and
η ∈ Cm represents to system noise.

We empathize on the fact that we are interested in a
gridless reconstruction of the reduced frequencies, in the
sense that the set of frequencies f? is drawn continuously
in the unidimensional torus T and is not restricted to belong
to some arbitrary discrete grid in the Fourier domain. As a
direct consequence, estimating the ground truth frequencies
f? from the sole finite-dimensional observation vector y is
an ill-posed problem, since, even in absence of noise, the set
of consistent spectral measures µ verifying the consistency

constraint y = LM (µ) is an infinite-dimensional affine
subspace of M (T). Among all those consistent measures,
the one of interest, in the presented sparse recovery context,
will be the one of smallest support. This optimal estimator µ0

can be represented in the noisy settings as the output of the
abstract regularized program

µ0 = arg min
µ∈M(T)

‖µ‖0 , s.t. ‖y − LM (µ)‖22 ≤ τ, (2)

where ‖·‖0 is the (potentially infinite) cardinality counting
pseudo-norm, and τ ∈ R+ is a regularization parameter that
can be adjusted according to the noise level [1]. In practice, the
output of Program (2) cannot be computed by a direct approach,
due to the combinatorial nature of the cost function and the
infinite dimensionally of the search space M (T). A common
alternative to this problems consists in relaxing the original
program into a convex total mass minimization program [2],
[3] of the form

µ1 = arg min
µ∈M(T)

|µ| (T) , s.t. ‖y − LM (µ)‖22 ≤ τ, (3)

whereby |·| (T) denotes the total mass of any complex Radeon
measure and is defined by,

∀µ ∈M (T) , |µ| (T) =
∫
T
|dµ| .

B. Background on line spectral estimation and inverse problems

The convex relaxation approach (3) was originally introduced
in the context of line spectral estimation with full measurement
(M = In) in [4]. It is shown that the relaxation is tight (i.e.
µ? = µ1) in absence of noise whenever the spectral components
f? composing the ground truth signal have a warp-around
distance ∆T (f?) ≥ 4

n−1 , and under provisio that the number
of observations n is large enough. This bound was tighten later
on to 2.52

n−1 under a stronger provisio [5]. On the other hand,
it was recently shown in [6] that no algorithms can robustly
recover a spectral support from noisy observations if f? do
not satisfies the necessary condition ∆T (f?) ≥ 2

n−1 , which
comforts the early work of Slepian on the asymptotic properties
of the time and band limiting operators [7].

High probability recovery guarantees were given for the par-
tial line spectral estimation problem whenever the subsampling
matrix M is picked at random [8] or verifies the incoherence
property [9]. Line spectral estimation is a canonical example
of sparse inverse problems defined over the set of measures.



We refer the interested reader to [2], [10] for more generic
considerations and guarantees on sparse measure reconstruction.

C. Contribution

This paper is divided into two parts. In Section II, we present
a scalable algorithm to recover the sparse spectrum from partial
measurements. In Section III, we study a specific deterministic
sub-sampling pattern and discuss its low-complexity and
sub-nyquist recovery guarantee. We show, in particular, that
applying the algorithm proposed in Section II results in order
of magnitude changes on the computation complexity of this
sampling scheme.

D. Notations

The adjunction of X is denoted X∗, whenever X is a vector,
a matrix, or a linear operator. The transposition of a matrix
or a vector X is written XT. Unless stated differently, vectors
of Cn are indexed in J0, n− 1K so that every vector u ∈ Cn

writes u = [u0, . . . , un−1]
T, and ek ∈ Cn denotes the kth

vector of the canonical basis (starting at 0). The space of
square complex matrices and the one of Hermitian matrices
of dimension n are respectively denoted Mn (C) and Sn (C) .
The cone of positive Hermitian matrices of same dimension is
denoted S+

n (C). Vectorial spaces of matrices are all endowed
with the Frobenius inner product denoted 〈·, ·〉 and defined
by 〈A,B〉 = tr (A∗B), where tr (·) is the trace operator. We
denote by Θn

k the elementary Toeplitz matrix equal to 1 on the
kth upper diagonal and zero elsewhere. For every matrix M ∈
Cm×n, m ≤ n, we denote by R∗

M ∈ (Mm (C)→ Cm) the
linear operator characterized for every matrix S ∈Mm (C) by
R∗

M (S) =
∑n−1

k=0 〈MΘkM,S〉 ek. Finally, a selection matrix
CI ∈ {0, 1}m×n for a subset I ⊆ J0, n− 1K of cardinality m
is a boolean matrix whose rows are equal to {e∗k, k ∈ I}.

II. LOW COMPLEXITY SPECTRAL RECOVERY

A. Dimensionality reduction for the partial line spectral
estimation problem

In our setting of interest, it is assumed that one disposes
of partial observations gathered as linear combination of the
output of a uniform sampler through a fat measurement matrix
M ∈ Cm×n. We recall a result from [11] attesting that the
Lagrange dual problem for the partial line spectral estimation
problem (3) takes the form of the semidefinite program (SDP)
of dimension m+ 1.

Theorem 1 (Dimensionality reduction). If the sub-sampling
matrix M ∈ Cm×n is such that e0 ∈ range (M∗) and M is
full rank, the Lagrange dual problem of Problem (3) writes

c? = arg max
c∈Cm

<
(
yTc

)
− τ

2
‖c‖22 (4)

subject to
[
S c
c∗ 1

]
� 0

R∗
M (S) = e0.

Moreover, the frequencies can be directly estimated by the
output c? of Program (4) by defining q? = M∗c? ∈ Cn

and locating whenever the polynomial Q (z) =
∑n−1

k=0 qkz
−k

reaches one in modulus around the unit circle. Computing the
solution of the semidefinite program (4) using out of the box
solvers based on interior points methods will result in a worst
case complexity of O

(
m7

)
operations. This section aims to

provide a lower complexity alternative to those computationally
expensive methods.

In the rest of the paper, we focus on “keep or discard”
subsampling patterns which are characterized by boolean
subsampling matrices CI introduced in Section I-D. Using
the particular structure of the matrix CI , one can show the
existence of a skew-symmetric partition of the square J1,mK2

into m subset {Jk}mk=1 such that the linear operator R∗
CI

can
be decoupled into m independent linear forms

∀S ∈Mm (C) , R∗
CI

(S) =

m∑
k=1

 ∑
(l,r)∈Jk

Sl,r

 ek. (5)

B. Fast dual computation using ADMM

In the same spirit than in [12], we derive the steps and update
equations to approach the optimal solution via ADMM. Unlike
the original work, we choose to perform ADMM on the dual
space instead of the primal one, and adjust the update steps
in order to take advantage of the particular structure of R∗

CI
.

The overall idea of this algorithm is to cut the augmented
Lagrangian of the problem into a sum of separable sub-
functions. Each iteration consists in performing independent
local minimization on each of those quantities. The interested
reader can find a detailed survey of this method in [13]. Before
any further analysis, we reformulate Program (4) into the
equivalent formulation

c? = arg min
c∈Cm

−<
(
yTc

)
+

τ

2
‖c‖22 (6)

subject to Z � 0

Z =

[
S c
c∗ 1

]
∑

(i,j)∈Jk

Si,j = δk, k ∈ J1,mK ,

which is more friendly for the ADMM decomposition.
1) Lagrangian separability: We denote by L the restricted

Lagrangian of Problem (6), obtained by ignoring the semidefi-
nite constraint Z � 0, and introduce the augmented Lagrangian
L+ as follows

L+ (Z,S, c,Λ, µ) = L (Z,S, c,Λ, µ)+
ρ

2

∥∥∥∥Z− [
S c
c∗ 1

]∥∥∥∥2
F

+
ρ

2

m∑
k=1

 ∑
(i,j)∈Jk

Si,j − δk

2

,

whereby the variables Λ ∈ Sm+1 (C) and µ ∈ Cm denote
respectively the Lagrange multipliers associated with the first
and the second equality constraints of Problem (6). The
regularizing parameter ρ > 0 is set to ensure a well conditioned
differentiability and to fasten the convergence speed of the



alternating minimization towards the global optimum of the
cost function L+. For clarity and convenience, the following
decompositions of the parameters Z and Λ are introduced

Z =

[
Z0 z
z∗ ζ

]
Λ =

[
Λ0 λ
λ∗ η

]
.

Moreover, for any square matrix A ∈ Mm (C), we let
by AJk

∈ C|Jk| the vector constituted of the terms
{Ai,j , (i, j) ∈ Jk}. The order in which the elements of Jk
are extracted and placed in this vector has no importance, as
long as, once chosen, it remains the same for every matrix A.
This allows to decompose the augmented Lagrangian into

L+ (Z,S, c,Λ, µ) = Lc (z, c, λ) + Lγ (ζ, η)

+

m∑
k=1

Lk (Z0,Jk
,SJk

,Λ0,Jk
) ,

whereby each of the sub-functions reads

Lc (z, c, λ) = −<
(
yTc

)
+

τ

2
‖c‖22 + 2 〈λ, z − c〉

+ ρ ‖z − c‖22
Lγ (ζ, η) = 〈η, ζ − 1〉+ ρ

2
(ζ − 1)

2

Lk (Z0,Jk
,SJk

,Λ0,Jk
) = 〈Λ0,Jk

,Z0,Jk
− SJk

〉

+ µk

 ∑
(i,j)∈Jk

Si,j − δk

 ,

+
ρ

2
‖Z0,Jk

− SJk
‖22

+
ρ

2

 ∑
(i,j)∈Jk

Si,j − δk

2

.

2) Update rules: The ADMM will consist in successively
performing the following decoupled update steps:

ct+1 ← argmin
c

Lc

(
zt, c, λt

)
∀k ∈ J1,mK , St+1

Jk
← argmin

SJk

Lk

(
Zt

0,Jk
,SJk

,Λt
0,Jk

)
St+1
j,i ← St+1

i,j , ∀ (i, j) ∈
m⋃

k=1

Jk

Zt+1 ← argmin
Z�0

L+

(
Z,St+1, ct+1,Λt, µt

)
Λt+1 ← Λt + ρ

(
Zt+1 −

[
St+1 ct+1

ct+1∗ 1

])

∀k ∈ J1,mK , µt+1 (k)← µt (k) + ρ

 ∑
(i,j)∈Jk

St+1
i,j − δk

 .

The third update step is necessary to maintain the Hermitian
structure of the matrix St+1 at every iteration. The update
steps for the variables ct+1 and

{
St+1
Jk

}m

k=1
admit closed form

expressions given by

ct+1 =
1

2ρ+ τ

(
ȳ + 2ρzt + 2λt

)

∀k ∈ J1,mK , St+1
Jk

=

(
Zt

0 +
1

ρ
Λt

0

)
Jk

−

 ∑
(i,j)∈Jk

(
Zt

0 +
Λt

0

ρ

)
i,j

−
(
δk −

µt
k

ρ

) j|Jk|

whereby ȳ ∈ Cm denotes the conjugate of the observation
vector y, and jv is the all-one vector of Cv for all v ∈ N.
The update Zt+1 at the tth iteration can be interpreted as an
orthogonal projection of Yt onto S+m+1 (C) for the Frobenius
inner product. This projection can be computed by looking
for the eigenpairs of Yt, and setting all negative eigenvalues
to 0. More precisely, denoting Yt = VtDtVt∗ an eigen-
decomposition of Yt, one get Zt+1 =VtDt

+V
t∗ where Dt

+

is a diagonal matrix whose jth diagonal entry dt+ [j] satisfies
dt+ [j] = max {dt [j] , 0}.

C. Computational complexity

On the computational point of view, at each step of ADMM,
the update ct+1 is a vector addition and performed in a linear
time O (m). On every extractions St+1

Jk
of St+1, the update

equation is assimilated to a vector averaging requiring O (|Jk|)
operations when firstly calculating the common second term
of the addition. Since

⋃m
k=1 Jk = m(m+1)

2 , we conclude that
the global update of the matrix St+1 is done in O

(
m2

)
. The

update of Zt+1 requires the computation of its spectrum, which
can be done in O

(
m3

)
via power method. Finally updating

the multipliers Λt+1 and µt+1 consists in simple matrix and
vector additions, thus of order O

(
m2

)
.

To summarize, the projection is the most costly operation
of the loop. Each step of ADMM method runs in O

(
m3

)
operations, which is a significant improvement compared to
interior point methods requiring around O

(
m7

)
operations.

III. APPLICATION TO MULTIRATE SAMPLING SYSTEMS

A. Sampling model

A multirate sampling system (MRSS) is defined by a set A
of p distinct grids (or samplers) Aj , j ∈ J1, pK. Each grid is
assimilated to a triplet Aj = (fj , γj , nj), where fj ∈ R+ is its
sampling frequency, γj ∈ R is its processing delay, expressed
in sample unit for normalization purposes, and nj ∈ N the
number of measurements acquired by the grid. We assume those
intrinsic characteristics to be known. The output yj ∈ Cnj of
the grid Aj sampling a spectrally sparse with real frequency
set ξ? = {ξ?r}

s
r=1 signal reads

∀k ∈ J0, nj − 1K , yj [k] =

s?∑
r=1

αre
i2π

ξ?r
fj

(k−γj)
. (7)

Applications of the MRSS framework are numerous in
signal processing and appears to be a possible extension of
the classic uniform sampling scheme. The MRSS framework
is also naturally fitted to describe sampling processes in
distributed sensor networks: each node, with limited processing
capabilities, samples at its own rate, a delayed version of a



complex signal. Collected data are then sent and merged at a
higher level processing unit, performing a global estimation of
the spectral distribution on a joint manner.

The frequency estimation problem naturally consists in
finding the sparsest spectral density that jointly matches the
p observation vectors yj for all j ∈ J1, pK. Equivalently to
(3), this problem can be relaxed into a convex minimization
program over the set of complex measures over the real line

µ1 = arg min
µ∈M(R)

|µ| (R) , s.t. ‖yj − Lj (µ)‖22 ≤ τj , ∀j, (8)

where Lj = Fn,fj ◦M γj
fj

and defining by Mτ , τ ∈ R the

temporal shift (or spectral modulation) operator defined for all
h ∈M (T) by Mτ (h) (ξ) = e−i2πτξh (ξ) for all ξ ∈ R.

Finally, we denote by m =
∑p

j=1 nj the total number of
measurements gathered by the arrays. Considering the vector
y =

[
yT1 , . . . , y

T
p

]T ∈ Cm obtained by concatenating the partial
measurements, one can rewrite the linear constraint of Program
(8) as y = LA (µ) where LA is the linear operator admitting the
partial operators {Lj}j∈J1,pK for restrictions on the p subspaces
induced by the construction of the observation vector y.

B. Common grid expansion and SDP formulation

Theorem 1 states that the dual problem can take the form of a
low dimensional SDP whenever the observation operator can be
written under the form LM = MFn for some admissible matrix
M ∈ Cm×n. This remarkable property is due to the polynomial
nature of the adjoint measurement operator L∗

M. However, in
the MRSS context, the dual observation operator defined by
L∗
A (c) =

∑m
j=1 L∗

j (cj) does not take such polynomial form
in the general case. A direct calculation reveals that L∗

A (c) is
instead an exponential polynomial for all c ∈ Cm. Up to our
knowledge, there is no welcoming algebraic characterization
for optimization purposes of the dual feasible in those settings.
Therefore, Theorem 1 cannot be directly transcribed in the
MRSS framework.

To bridge this concern, we restrict our analysis to the case
where the consistency operator admits a factorization of the
form LA = LM = MFn for some n ∈ N and M ∈ Cm×n.
The following aims to provide an algebraic criterion on the
parameters {(fj , γj , nj)} of A for this hypothesis to hold. We
will see that this extra hypothesis consists in supposing that
the samples acquired by A can by virtually aligned at a higher
rate on another grid A+. Such grid will be called common
supporting grid for A, and are defined as follows.

Definition 2. A grid A+ = (f+, γ+, n+) is said to be a common
supporting grid for a set of sampling grids A = {Aj}j∈J1,pK if
and only if the set of samples acquired by the MRSS induced
by A is a subset of the one acquired by A+. In formal terms,
the definition is equivalent to,{

1

fj
(kj − γj) , j ∈ J1, pK , kj ∈ J0, nj − 1K

}
⊆

{
1

f+

(k − γ+) , k ∈ J0, n+ − 1K
}
. (9)

0 t

Figure 1. A representation of a multirate sampling system A composed of
two arrays (A1,A2), and its associated minimal common grid A�. Purple
stars in the common grid correspond to time instant acquired multiple times
by the system A, and blank triangles to omitted samples. In this example,
the dimension of the minimal common grid is n� = 13, The net number of
observations of A is m = 9. Finally the equivalent observation set of the
common grid is I = {0, 1, 3, 5, 6, 7, 9, 11, 12}.

The set of common supporting grids of A is denoted by C (A).
Moreover, a common supporting grid A� = (f�, γ�, n�) for
A is said to be minimal if and only it satisfies the minimality
condition, ∀A+ ∈ C (A) , n� ≤ n+. Finally, the equivalent
observation set of the minimal common grid A�, denoted by
I , is the subset of J0, n� − 1K of cardinality m, formed by the
k’s for which the time instant 1

f�
(k − γ�) is acquired by A.

It is clear that if C (A) is not empty then the minimal
common supporting grid for A exists and is unique. For ease
of understanding, Figure 1 illustrates the notion of common
supporting grid by showing a MRSS formed by two arrays
and their minimal common grid. Proposition 3 states necessary
and sufficient conditions in terms of the parameters of A such
that the set C (A) is not empty. The interested reader is invited
to refer to [11] for a complete proof of this proposition.

Proposition 3. Given a set of p grids A =
{Aj = (fj , γj , nj)}j∈J1,pK, the set C (A) is not empty if
and only if there exist f+ ∈ R+, γ+ ∈ R, a set of p positive
integers {lj} ∈ Np, and a set of p integers {aj} ∈ Zp

satisfying f+ = ljfj and γ+ = ljγj − aj for all j ∈ J1, pK.
Moreover a common grid A� = (f�, γ�, n�) is minimal, if
and only if

gcd
(
{aj}j∈J1,pK ∪ {lj}j∈J1,pK

)
= 1

γ� = maxj∈J1,pK {ljγj}
n� = maxj∈J1,pK {lj (nj − 1)− aj} .

Although the conditions of Proposition 3 appear to be strong
since one get C (A) = ∅ almost surely in the Lebesgue sense
when the sampling frequencies and delays are drawn at random,
assuming the existence of a common supporting grid for
A is not meaningless in our context. By density, one can
approximately align the system A on an arbitrary fine grid Aε,
for any given maximal jitter ε > 0, and perform the proposed
super-resolution on this common grid. The resulting error from
this approximation can be interpreted as a “basis mismatch”.
The detailed analysis of this approach will not be covered in
this work, however, similar approximations can be found in the
literature for the analogue atomic norm minimization view of
the super-resolution problem [1]. We claim that those results



extend in our settings and that the approximation error vanishes
in the noiseless settings when going to the limit ε→ 0.

The next proposition concludes that the requested factoriza-
tion of the linear observation operator L is possible whenever
C (A) 6= ∅.

Proposition 4. The set C (A) is not empty if and only if there
exists a subset I ⊆ [0, n� − 1] of cardinality m such that LA =

CI

(
Fn�,f� ◦M γ�

f�

)
, whereby A� = (f�, γ�, n�) denotes

the minimal grid of A. Moreover Program (8) is equivalent to
Program (3) for the consistency constraint LA = LCI .

C. Dual certifiability and sub-Nyquist guarantees

In this section, sufficient conditions are presented to ensure
the tightness of the relaxation (3) in absence of noise. In
addition, mild conditions to ensure a sub-Nyquist recovery of
the spectral spikes at a rate f� from measurements taken at
various lower rates {fj}j∈J1,pK are given. The proof of this
result is available in [11] and relies on an extension of the
polynomial construction methods presented in [4], [8].

Theorem 5. Suppose that the sampled signal is noise free
(η = 0), and let A = {Aj = (fj , γj , nj)}j∈J1,pK be a set of
sampling arrays. Suppose that C (A) is not empty, and denote
by A� = (f�, γ�, n�) the minimal common supporting grid of
A. Assume that the system induced by A satisfies at least one
of the two following separability conditions,

• Strong condition:

∀j ∈ J1, pK , ∆T

(
ξ?
fj

)
≥ 2.52

nj − 1
and nj > 2000,

• Weak condition:

∃j ∈ J1, pK , ∆T

(
ξ?
fj

)
≥ 2.52

nj − 1
and nj > 2000

and m ≥ (lj + 1) s?,

then the output µ1 of Program (3) is equal to µ?.

The weak condition guarantees that the spectral components
ξ? can be recovered with an ambiguity modulo f� when
jointly resolving the MRSS, while individual estimations would
guarantee to recover them with an ambiguity modulo fj ≤ f�.
The weak condition require standard spectral separation from
a single array Aj , and sufficient measurements m of the time
signal. The extra measurements m− nj corresponding to the
other grids are not uniformly aligned with the sampler Aj .
Therefore the sampling system induced by A achieves sub-
Nyquist spectral recovery of the spectral spikes, and pushes
away the classic spectral range fj from a factor f�

fj
= lj .

Nevertheless, this results relies on a construction of a dual
polynomial certificate having a modulus close to unity on
the aliasing frequencies induced by the zero forcing upscaling
from fj to f�. Consequently, one can expect to obtain degraded
performances in noisy environments when the sub-sampling
factor lj becomes large.

D. Complexity improvements

Recovering the frequencies in an MRSS using the original
method proposed in [8] would requires to solve a SDP of dimen-
sion driven by the size n� of the common grid. The actual value
of n�, fully determined of the observation pattern induced by A,
is given by n� = maxj∈J1,pK {lj (nj − 1)− aj} ,whereby the
parameters {(aj , lj)}j∈J1,pK are defined in Proposition 3. This
is particularly disappointing since n� grows at a speed driven
by the product of the nj’s, whereas the essential dimension
m of the problem is given by the number of net observations
acquired by the grid m =

∑p
j=1 nj . Suppose, for instance, a

delay-only MRSS constituted of p grids Aj =
(
f,− 1

bj
, n0

)
sampling the time signal with the same frequency f and such
that the delays {bj}pj=1 forms a set of pairwise coprime integers.
One would have n� = Ω(bpn0) while m = pn0. Hence the
ratio m

n�
= o

(
p
bp

)
and tends to 0 exponentially fast with the

number of samplers p of the system.
Under the common grid hypothesis, and using the equiva-

lence guaranteed by Proposition 4, one could instead recover the
frequency using the equivalent ADMM framework described
in Section II which would requires O

(
m3

)
operations. Hence

the proposed method brings order of magnitude changes in
the computational complexity of the line spectrum recovery,
allowing a reconstruction of the spectral measure µ? up to
poly-logarithmic orders in n�.
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