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Abstract—Spike deconvolution is an inverse problem
aiming at recovering point sources from their convolution
with a point spread function (PSF). The stability of this
problem in the presence of noise is long known to be
closely related to the separation between those sources. It
is therefore essential to characterize the resolution limit
above which the point sources can be stably recovered
from a given estimator, without spurious or missing sources
from the estimate. In this paper, we establish the resolution
limit above which the Beurling-LASSO estimator can stably
recover two point sources, and show that the limit depends
only on the PSF. Our result highlights the impact of PSF
on the resolution limit in the noisy setting, which was
not evident in previous studies of the noiseless setting. We
further confirm our findings by comparing the theoretical
limit with the empirical performance of the Beurling-
LASSO estimator.

I. INTRODUCTION

A. The resolution limits of spike deconvolution

The super-resolution problem consists of recovering
a stream of one-dimensional point sources (or spikes)
from distorted and noisy observations. This problem finds
application in a broad variety of domains including, but
not limited to, radar, sonar, optical imaging, wireless
communications and sensing systems. The distortion
degrading the point sources is often assumed to be
of the form of a low-pass shift-invariant point spread
function (PSF), whose bandwidth reflects the physical
limitations of the measurement device involved in the
acquisition of the point sources. In other words, super-
resolution amounts to recovering the point sources from
the observation of their convolution with the known PSF.

Of fundamental importance is the stability of the
reconstruction from noisy observations, which has long
been associated to the separation between the point
sources. As an example, the Rayleigh limit (see e.g. [1])
is a popular criterion to characterize the resolution limit
of the super-resolution problem. However, it stands as an
empirical limit that does not rely on any statistical princi-
ple. Significant advances were made in recent years over
a theoretical characterization of this limit from statistical
perspectives. On one hand, super-resolution has been
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shown to be well-posed under a large enough separation
of the sources, regardless of the estimator [2]. On the
other hand, point sources are known to be statistically
undistinguishable below a certain separation [3], [4]. Most
of those results can be traced back to a phase transition
phenomenon on the condition number of Vandermonde
matrices with nodes on the unit circle [5]. However,
they assume an asymptotic regime involving a diverging
number of measurements, limiting their practical appeal.

In contrast, the support stability [6] has been proposed
as a criterion to characterize the robustness of a broad
range of parameter estimation problems, including super
resolution. It is defined as the capability of an estimator
to return exactly the same number of point sources as that
of the ground truth, without spurious or missing elements.
In view of the Rayleigh limit, it can be anticipated that the
support stability of an estimator is directly related to the
separation of the sources. Fig. 1 illustrates this intuition by
plotting a ground truth measure containing two spikes and
its reconstruction from the Beurling-LASSO estimator,
a convex estimator based on the total variation (TV)
minimization framework (defined in Section I-C), for
two different separations of the sources, when the PSF
is the ideal low-pass filter. Below a certain separation
between the two ground truth sources, the estimator
returns additional spurious point sources even at a high
signal-to-noise ratio (SNR).

B. Contributions and organization of this paper

This paper focuses on characterizing the support
stability of the Beurling-LASSO estimator [8] when the
input signal is composed of two closely located point
sources. Despite its apparent simplicity, this setup is of
importance both in theory and in practice. In theory, it
allows us to develop a deeper insight on the fundamental
notion of resolution limit – the minimal distance above
which two point sources are said to be distinguishable.
In practice, it models the separation of a weak moving
target from a strong clutter in radar [9], and accurate
counting of the number of molecules in super-resolution
fluorescence microscopy [10]. We establish in Theorem 2
a sufficient separation condition under which Beurling-
LASSO is guaranteed to be support stable. Moreover this
result highlights the dependency of the stable resolution
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Fig. 1. Support stability of the Beurling-LASSO estimator for
reconstructing two point sources with different separations when the
PSF is the ideal low-pass filter g(τ) = sinc(πτ). Here the number
of samples is N = 129 and SNR = 40dB. The locations of point
sources are estimated from (10) using the pick dual polynomial [7],
drawn in blue. (a): ∆ = 1.2/N , the estimator returns exactly two
spikes closely located to the ground truth and is support stable. (b):
∆ = 1.1/N , the estimator returns two additional spurious spikes and
is not support stable.

for noisy super-resolution with respect to the PSF, which
was not evident in the noiseless settings.

The rest of the paper is organized as follows. In
Section II, we formulate the super-resolution problem and
define the Beurling-LASSO estimator. Section III intro-
duces the notion of support stability in Definition 1, and
presents our main result in Theorem 2, with subsequent
discussions in the light of related literature. Furthermore,
the theoretical bound is corroborated by experimental
simulations. A brief conclusion is drawn in Section IV.

C. Mathematical notations and definitions

Vectors in CN are denoted by boldface letters such
as x. The Hilbert space of square integrable functions
from C to R is denoted by L2. We define by M(R) and
M(T) the spaces of Radon measures defined over the
reals and the torus T ∼ R/Z, respectively. The vector
space of continuous functions from T to C, denoted as
C(T), is endowed with the supremum norm ‖ · ‖∞. The
total variation norm ‖ · ‖TV is defined as the dual norm
of ‖ · ‖∞ and given for all µ ∈M(T) by

‖µ‖TV = sup
h∈C(T)
‖h‖∞≤1

<
[∫

T
h (t)dµ (t)

]
. (1)

II. PROBLEM FORMULATION

A. Observation model
We consider a scenario where there are only two point

sources to recover. Denoting byM(R) the set of complex
Radon measures over the reals, the signal to resolve is
modeled as a measure ν? ∈M(R) of the form

ν?(τ) = c1δ(τ − τ1) + c2δ(τ − τ2), (2)

where δ(·) is the Dirac measure, τ1, τ2 ∈ R are the time-
domain locations of the two spikes and c1, c2 ∈ C\{0}
are their non-zero associated complex amplitudes. The
continuous-time signal x(τ) resulted from the convolution
of the ground truth measure ν?(τ) with the PSF g(τ)
writes as

x(τ) = (g ∗ ν?) (τ)

= c1g(τ − τ1) + c2g(τ − τ2), ∀τ ∈ R, (3)

where ∗ denotes linear convolution. Furthermore, because
of the needs of digital processing, one typically takes
discrete-time measurements. An idealistic, yet credible
approximation of many super-resolution problems en-
countered in practice is to consider measurements drawn
from uniform sampling of the Fourier transform of x(τ).
Let F(·) be the Fourier transform of a measure inM(R),
defined as

F(µ)(f) =

∫
R
e−i2πfτdµ(τ), ∀f ∈ R, a.e..

∀µ ∈ M (R). The Fourier-domain counterpart of the
observation model (3) becomes

X(f) = G(f) · F(ν?)(f), ∀f ∈ R, a.e.,

where X = F(x), G = F(g) are the Fourier transforms
of the signal x(τ) and the PSF g(τ), respectively.
We assume that the PSF g(τ) is band-limited, with a
bandwidth of B > 0. Therefore, G(f) = 0 for every f
outside the interval

(
−B2 ,

B
2

)
. We further assume an odd

number N = 2n+1 of measurements1 is taken uniformly
over the bandwidth

(
−B2 ,

B
2

)
. Therefore, the observation

vector is given by x = {xk = X(kB/N)}nk=−n ∈
CN , corresponding to measuring X(f) at frequencies
{kB/N}nk=−n ⊂

(
−B2 ,

B
2

)
.

For convenience, we introduce a normalized measure
µ? ∈ M(R) as µ?(t) = N

B ν?(Nt/B) for all t ∈ R,
which by combining with (2) can be rewritten as,

µ?(t) = c1δ(t− t1) + c2δ(t− t2), (4)

where t1 = Bτ1/N and t2 = Bτ2/N are the normalized
locations of the point sources. The observations x are
linked to µ? by the linear relation

x = Φg(µ?). (5)

1An odd number of measurements is considered only for clarity and
simplification purposes, and does not affect the generality of the results
presented in this paper.



Here, the measurement operator Φg is defined by

Φg : M(R)→ CN

µ 7→ diag(g)
[
F(µ)(−n), . . . ,F(µ)(n)

]>
,

(6)

where g = {gk = G(kB/N)}nk=−n ∈ CN is the vector
obtained by sampling the Fourier transform of the PSF
g(τ) at frequencies {kB/N}nk=−n. Furthermore, notice
that the observation operator Φg is invariant with respect
to integer shifts of the underlying measure µ?. Thus, one
can only hope to identify µ? over M(T). Without loss
of generality, the delays t1, t2 are normalized within the
unit interval, i.e. t1, t2 ∈ [− 1

2 ,
1
2 ).2

In the presence of noise or measurement errors, we
assume x is corrupted by an additive term w. The
observations are given as

z = x + w = Φg(µ?) + w, (7)

where ‖w‖2 ≤ η is assumed to be bounded for some
noise level η > 0.

B. Reconstruction via total variation minimization

In the absence of noise, the super-resolution problem
is defined as recovering µ? from the observations x and
the PSF g(τ), yielding a linear inverse problem over
the set of measures. Clearly, the problem is ill-posed
as there are an uncountable infinity of measure µ that
can explain the noiseless observations x. Harnessing a
sparsity prior on the ground truth measure µ?, the ill-
posedness of the problem can be addressed by searching
for the measure µ̂\ with minimal support that is a solution
of (5). Equivalently, denoting by ‖·‖0 the “pseudo-norm”
counting the potentially infinite cardinality of the support
of a measure in M(T), the optimal estimator µ̂\ for the
super-resolution problem is given by the solution of the
optimization program

µ̂\ = arg min
µ∈M(T)

‖µ‖0 s.t. x = Φg(µ), (8)

which is known to have a unique solution equal to the
ground truth µ? whenever the number of measurements
N is at least twice as large as the number of spikes to
recover [11].

An immediate drawback of the formulation (8) is
the computational infeasibility of the minimization of
the pseudo-norm ‖·‖0. To overcome this issue, it is
proposed instead in [12] to solve a convex relaxation
of the estimator (8) to recover the ground truth measure.
This is achieved by relaxing the cost function of (8)
by the total variation norm, which is one of its convex

2Since ti = Bτi/N , i = 1, 2, and assuming τi ∈ [−T/2, T/2),
where T is the time window of interest, then the ambiguity constraint
ti ∈ [−1/2, 1/2) suggests that the number of measurements should
satisfy N ≥ T ·B, the time-bandwidth product, to avoid aliasing.

surrogate. The total variation minimization of measures,
also known as the atomic norm minimization [13], [14],
is a convex optimization framework to regularize a variety
of linear inverse problems over continuous dictionaries.
The resulting TV estimator, denoted as µ̂0, is given by
the convex optimization program

µ̂0 = arg min
µ∈M(T)

‖µ‖TV s.t. x = Φg(µ). (9)

Despite the infinite dimensionality of the space of Radon
measure M (T), the program (9) can be computed
efficiently by solving an associated semidefinite program
in a finite dimension N (see e.g. [7]).

In the presence of noisy observations of the form (7),
the Beurling-LASSO estimator µ̂λ [8], also known as
the atomic norm denoiser [7], can be used to recover the
ground truth and its estimate µ̂λ is written as

µ̂λ = µ̂λ(z) = arg min
µ∈M(T)

1

2
‖z − Φg(µ)‖22 + λ ‖µ‖TV ,

(10)
where λ > 0 is a regularization parameter drawing a
trade-off between the TV norm of the estimate, as well
as its fidelity to the observations.

III. STABILITY OF THE BEURLING-LASSO

A. Support stability

Among the many possible metrics quantifying the
stability of parameter estimation problems, the support
stability, first introduced in [6], is of particular interest
in the context of super-resolution. Roughly speaking,
an estimator is said to be support stable if it outputs a
measure containing the same number of point sources as
that of the ground truth when the noise level is bounded. A
formal definition of this criteria is given in the following.

Definition 1 (Support stability). Consider the observa-
tions z = Φg(µ?) +w. An estimator µ̂ = µ̂(z) based on
z is said to be support stable for a given ground truth
measure µ? of the form (4) if there exists η > 0 such that
for all w with ‖w‖2 < η, the estimate µ̂ is a measure
containing two spikes, i.e.

µ̂(z) = ĉ1δ(t− t̂1) + ĉ2δ(t− t̂2),

and if the estimated parameters satisfy, up to a permu-
tation Π of the indices:

∣∣tk − t̂Π(k)

∣∣
T = O(‖w‖2) and∣∣ck − ĉΠ(k)

∣∣ = O(‖w‖2) for k = 1, 2 in the limit of
‖w‖2 → 0.

As announced in Section I-A, the support stability of
the Beurling-LASSO is excepted to be related to the
separation of the sources defined as ∆ = |t2 − t1|T,
where the distance is taken over the torus T. This
phenomena is highlighted by Fig. 1.



B. Main results

We introduce the following auxiliary functions before
stating the main result of this paper. We denote by κ(τ)
the autocorrelation function of the PSF g ∈ L2, which is
defined as

κ (τ) =

∫
R
g(y)g(τ + y)dy, ∀τ ∈ R. (11)

Additionally, the function uβ , vβ ∈ L2, representing the
sum and difference of two delayed version of the function
κ by a shift β ≥ 0 are given by

uβ(τ) = κ(τ − β

2
) + κ(τ +

β

2
), (12a)

vβ(τ) = κ(τ − β

2
)− κ(τ +

β

2
). (12b)

Our main contribution, summarized in Theorem 2,
states that, under some mild smoothness and band-limited
assumptions on the PSF g(τ), the Beurling-LASSO
estimator is support stable over the set of two-spike
measure provided that their separation ∆ > γ?/N is
large enough. Moreover the value of γ? depends only on
the PSF g(τ). We refer the reader to [15] for a stronger
statement of this result, and its full proof.

Theorem 2 (Stable resolution limit of Beurling-LASSO).
Suppose that the PSF g satisfies the following regularity
conditions (H1) and (H2).

(H1) g ∈ L2 is non-zero, real and three times differen-
tiable, and verifies for some δ > 0 and C` > 0∣∣∣g(`)(τ)

∣∣∣ ≤ C`

1 + |τ |1+δ
, ∀τ ∈ R, ` = 0, 1, 2, 3,

(13)
(H2) G = F (g) ∈ L2 is band-limited within B, so that

G(f) = 0, ∀ |f | > B/2.

Let γ? the positive constant, depending only on the PSF
g, defined as γ? = max{γ?1 , γ?2 , γ?3} > 0 with

γ?1 = B sup
β>0

{
sup
τ≥0
|r̃β (τ)| > r̃β

(
β

2

)}
, (14a)

γ?2 = B sup
β>0

{
sup
τ≥0
|s̃β (τ)| > s̃β

(
β

2

)}
, (14b)

γ?3 = B sup
β>0

{
−κ′′(0)

2
+ κ′′(β)

2 − κ′(β)κ′′′(β) ≥ 0
}
,

(14c)

where the intermediate functions r̃β (τ), s̃β (τ) are
further defined, for any β > 0 and τ ∈ R as

r̃β (τ) = (−κ′′ (0) + κ′′ (β))uβ (τ) + κ′ (β) v′β (τ)
(15a)

s̃β (τ) = (−κ′′ (0)− κ′′ (β)) vβ (τ)− κ′ (β)u′β (τ) .
(15b)

Then there exists N0 ∈ N such that, for every N ≥ N0

and every µ? of the form (4) with

|t1 − t2|T >
γ?

N
, (16)

there exists α > 0 such that the Beurling-LASSO estima-
tor µ̂λ (Φg (µ?) + w) with the regularization parameter
λ = α−1 ‖w‖2 is support stable.

A few remarks are in order regarding the statement
of Theorem 2. Firstly, it provides an explicit means
to compute γ?, based on the evaluation of (14), for a
given PSF satisfying the regularity conditions. The key
quantities, γ?k , k = 1, 2, 3 are suprema of continuous
functions, and the complexity of the computation es-
sentially depends on the variations and smoothness of
the autocorrelation function κ. Moreover, the constants
γ?ks are invariant through a re-scaling the PSF via a
transform g (τ) ← g (cτ) for some c > 0. As a result
γ? can be evaluated for a PSF with nominal bandwidth
B = 1. Table I provides the value of the constant γ? for
frequently encountered PSFs,3 including the truncated
Gaussian function, and the prolate spheroidal wave
functions (PSWF)4. Fig. 2 illustrates how the constant
γ? increases while the temporal concentration of the
truncated Gaussian function and the prolate spheroidal
wave function degenerates.

Additionally, the separation condition (16) can be
equivalently interpreted in terms of the delays τ1, τ2 of
the unnormalized measure ν? as in (2) as

B |τ2 − τ1| > γ?, (17)

provided the spikes to be localized are in the interval
(−N/(2B), N/(2B)). Finally, our results allow arbitrary
coefficients of the spikes, as long as they are sufficiently
separated by γ?.

C. Connections to the related literature

The impact of the separation between the sources on
the performance of the TV estimator (9) has been studied
extensively in the noiseless setting. Exact recovery is
first guaranteed in [12] under a separation of the sources
∆ > 4/N provided that N is large enough. This result
has been later improved to ∆ ≥ 2.56/N in [18]. On
the other hand, it is known that TV regularization can
fail for some signals with ∆ < 2/N [19]. The previous
constants are significantly larger than the one established
in Table I as no prior assumptions on the number of
sources are made in those works. When considering only

3Some of the PSFs listed in Table I, such as the ideal low-pass filter,
do not satisfy the condition (13) of Theorem 2. Nevertheless, they can
be handled by a stronger version of the result proposed in [15].

4The PSWF ψτ0 for the temporal concentration band [−τ0, τ0] is
defined as a function g(·) with a frequency band

(
− 1

2
, 1
2

)
and with

‖g‖L2
= 1 which maximizes the integral

∫ τ0
−τ0
|g(τ)|2dτ [16], [17].



Point spread function Fourier transform γ?

Ideal low-pass: sinc(πτ) 1.132

Circular low-pass5: J0(πτ)/
√
πτ 1.253

Triangular low-pass: sinc(πτ/2)2 1.449

Truncated Gaussian: e−
τ2

2σ2 ∗ sinc(πτ) (see Fig. 2)

Prolate spheroidal wave function: ψτ0 (τ) (see Fig. 2)

TABLE I
VALUES OF THE MINIMAL SEPARATION γ? FOR COMMONLY ENCOUNTERED POINT SPREAD FUNCTIONS.
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Fig. 2. Top: The stable resolution limit γ? for a truncated Gaussian
PSF for different values of the parameter σ. Bottom: The prolate
spheroidal wave function of order zero ψτ0 for different widths of the
concentration band [−τ0, τ0].

two sources, as in (4), it is shown in [6] that a separation
∆ > 1/N is necessary to guarantee exact recovery.

Guarantees in terms of support recovery have been
given in the presence of noise in [20], [21], [22], by
bounding the residual of µ̂ outside the support of µ?.
Those bounds do not provide, however, a guarantee on the
absence of spurious/missing point sources in the estimate.
Under an extra white Gaussian noise assumption, a trade-
off between the separation of the sources and the error

5J0(·) denotes the Bessel function of the first kind.

of the parameters is highlighted in [23], when the PSF
is the ideal low-pass filter.

More interestingly, in the context of this paper, the
support stability of the Beurling-LASSO estimator is
studied in [6] for a broad range of measurement operators
using a “non-degenerate source condition”. The analysis
is based on the asymptotic behaviors of the dual solution
of (10) when the noise level η and the regularization
parameter λ simultaneously tend to 0. Yet, in the general
case, it is challenging to explicitly verify this condition
in terms of the separation parameter of the sources.
In [24], [25], the support stability of reconstructing
positive sources is considered without imposing a minimal
separation condition. The proof of Theorem 2 is achieved
by verifying the non-degenerate source condition for the
two-spike case with arbitrary signs, which is already quite
technical and non-trivial.

D. Numerical experiments

It is natural to compare the value of the constant γ?

anticipated by Theorem 2 with the empirical performance
of the Beurling-LASSO estimator. Such a comparison is
provided in Fig. 3 by varying the separation parameter
N∆ for different PSFs. The empirical success rate
suggests the existence of a phase transition on the support
stability of the reconstruction around the value γ?, which
supports the findings of our theory.

IV. CONCLUSIONS

This paper studies the support stability of the Beurling-
LASSO estimator for estimating two closely located point
sources and characterizes the resolution limit as a function
of the PSF, above which the Beurling-LASSO estimator
is support stable. Our result highlights and quantifies
the role of PSF in noisy super resolution, which is not
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Fig. 3. Empirical success rate for the Beurling-LASSO estimator to return a measure with two point sources, for three different PSFs, under
additive white Gaussian noise, as a function of the separation parameter N∆. The support stability threshold γ? predicted by Theorem 2 is
shown in red. Here, we set N = 101, SNR = 40dB. The results are averaged over 200 trials.

evident in the study of the noiseless setting. In the future,
it is worthwhile to further investigate the scenario with
more than two point sources.
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